
Fuzzing for SDL: Select,
Cover, Reveal
Speaker: Vartan
Padaryan, Ph.D.

Head of Binary Code
Reverse Engineering
Laboratory, ISP RAS

ISP RAS

Speaker: Vlad
Stepanov

Infosec.exchange/@VishnyaSweet

Speaker: Alexey
Vishnyakov, Ph.D.

About ISP RAS
25+ success years of research and development
based on foundational scientific school

700+ researchers and engineers

30+ work directions, including: program analysis
and cybersecurity, big data analysis, artificial
intelligence, operating systems, mathematical
modeling, nD-modeling

Long-term contracts (10+ years) and joint R&D
labs with Samsung and Huawei

Industrial digital cardiology projects jointly with
Sechenov University (Moscow) and others

Cooperation with international open source
communities (e.g. finding and fixing errors in
the Linux operating system and PyTorch and
TensorFlow, popular machine learning
frameworks)

Three system programming chairs in leading
Russian universities: Moscow State University,
Moscow Institute for Physics and Technology,
Higher School of Economics

We:
• ensure security of world famous products
• create analytical systems that simplify work in many application areas
• improve the world famous open source software

Our products are used by 100+ companies
in Russia and abroad

3

Cybersecurity Technology Stack

We are the only organization in Russia who has created and implemented a full stack of
technologies to ensure the life cycle of secure software development

World level analysis quality and
usability (like Synopsis Coverity
Static Analysis, Perforce Klocwork
Static Code Analysis, Fortify Static
Code Analyzer) that can be
tailored out to create a unique in-
house tool

Trusted safe
compiler

SAFEC

Static source code
analysis tool

SVACE

Complex dynamic
analysis system

CRUSHER

Automatic analysis
of attack surface

NATCH

Main static source code analysis tool in Samsung since 2015, also used in Huawei, Kaspersky Lab and 100+ other companies world wide

• checks all Samsung mobile software based on Android and Tizen (own Samsung operating system used in TVs, entertainment systems, appliances,
smartphones):

✓ is used by 10 000 developers

✓ has analyzed 300 billion lines of code

• finds 50+ critical error types in program source code

• unites 6 programming languages, 20+ compilers, 10+ architectures

No open source competitors,
similar tools are closed and US owned

No open source competitors No open source competitors

4

Every End is a New Beginning

Fuzzing Functional
testing

Attack surface
analysis

Crash
deduplication Crash triage

Data format
recovery

Coverage

• Fuzzing itself doesn't solve anything
• Find bugs, not waste electricity!
• The effectiveness of bug hunting depends on the

integration of fuzzing with adjacent technologies
• Construct pipeline!

CI/CD

Natch: Detecting Attack
Surface with Dynamic
Taint Analysis

6

Motivation

The main concept that sets the priority of choosing
targets for fuzzing is the attack surface.

Attack surface is a set of software system interfaces
directly or indirectly available for external influence.
Determining the attack surface now is a manual job
done by an expert.

7

Attack Surface

▪ Files

▪ Processes

▪ Sockets

▪ Scripts

▪ Loadable modules

▪ Tainted data handlers

8

Automatic Attack Surface Detecting

▪ Simplify and reduce the
cost of developing and
certifying complex software

▪ Increase the security of
software products by
eliminating human error in
determining the attack
surface

Our goals

9

Virtual Machine Introspection

▪ There is no need to inject agents
into the guest code or have
access to the source code of the
system

▪ It is based on the system calls
hooking, parsing the
parameters of system
functions and dumps of
loaded modules

▪ It also parses Linux kernel
structures that store
information about running
processes

Our approach:

10

VMI Profile Generation
Existing solutions

▪ Debugger-assisted methods
(Volatility)

▪ Compiler-assisted methods
(SigGraph)

▪ Guest-assisted methods
(Panda, Decaf)

▪ Binary analysis-assisted methods
(Origen, AutoProfiler, Katana)

Our approach is based on heuristics!

Tuning started. Please wait a little...

Generating config file: task_config.ini

Trying to find 19 kernel-specific parameters

[01/19] Parameter - task_struct->pid : Found

[02/19] Parameter - task_struct->comm : Found

[03/19] Parameter - task_struct->group_leader : Found

[04/19] Parameter - task_struct->parent : Found

[05/19] Parameter - mount fields : Found

[06/19] Parameter - files_struct fields : Found

[07/19] Parameter - vm_area_struct size : Found

[08/19] Parameter - vm_area_struct->vm_start : Found

[09/19] Parameter - vm_area_struct->vm_end : Found

[10/19] Parameter - vm_area_struct->vm_flags : Found

[11/19] Parameter - mm->map_count : Found

[12/19] Parameter - mm_struct fields : Found

[13/19] Parameter - task_struct->mm : Found

[14/19] Parameter - mm->arg_start : Found

[15/19] Parameter - socket struct fields : Found

[16/19] Parameter - task_struct->state : Found

[17/19] Parameter - task_struct->exit_state : Found

[18/19] Parameter - cred->uid : Found

[19/19] Parameter - task_struct->cred : Found

Detected 49032 system events

Detected 19 of 19 kernel-specific parameters. Creating config file...

Tuning completed successfully!

11

Dynamic Information Flow Tracking

Limitations

▪ For other data transfers
tracking, we additionally
allocate 2 bytes of
shadow memory for each
byte of guest memory

▪ Transfers over files, sockets,
and shared memory are
tracked by hooking system
calls and parsing kernel
structures

12

Natch Usage

1.
Prepare the virtual machine
image and the target
software

2.
Record the target software
execution in virtual machine

3.
Choose input data for
tracking (files, network
connections)

4.
Replay the execution and
save attack surface

5.
Load the resulting attack
surface into SNatch

6.
Explore the attack surface
with interactive reports in
the browser

13

SNatch: Attack Surface Visualization

14

Process Tree

15

Process Timeline

16

Resources And Traffic

17

Call Graph

18

Flame Graph

19

Taint Analysis

Threshold = 255

20

Taint Analysis

Threshold = 240

21

Other Possibilities

▪ Determination of processes running in

docker containers

▪ Getting a list of Python scripts running in

each process

▪ Building call trees for Python functions

that process tainted data

Sydr: Continuous
Hybrid Fuzzing and
Dynamic Analysis for
SDL

23

What is Sydr?

Sydr is a dynamic symbolic execution tool that explores new
paths and enables error detection. Sydr uses DynamoRIO for
concrete execution and Triton for symbolic execution.

Sydr-Fuzz is a dynamic analysis tool for security development
lifecycle. It combines fuzzing (libFuzzer, AFL++) with the power
of dynamic symbolic execution (Sydr).

Sydr-Fuzz supports multiple programming languages
including C/C++ (libFuzzer/AFL++), Rust (cargo-fuzz/afl.rs), Go
(go-fuzz), Python (Atheris), and Java (Jazzer). All languages
except Python and Java support symbolic execution with Sydr.

https://dynamorio.org/
https://triton-library.github.io/
https://www.llvm.org/docs/LibFuzzer.html
https://aflplus.plus/
https://www.llvm.org/docs/LibFuzzer.html
https://aflplus.plus/
https://github.com/rust-fuzz/cargo-fuzz
https://github.com/rust-fuzz/afl.rs
https://github.com/dvyukov/go-fuzz
https://github.com/google/atheris
https://github.com/CodeIntelligenceTesting/jazzer

24

Dynamic Symbolic Execution with Sydr

▪ Each input byte is modeled by a free symbolic variable

▪ Instructions interpretation produces SMT formulas

▪ Symbolic state maps registers and memory to SMT
formulas

▪ Path predicate contains taken branch constraints

▪ Sydr inverts branch conditions to explore new paths
and solves security predicates to detect errors (out of
bounds, integer overflow, etc.)

25

26

Sydr-Fuzz Usage

Sydr-Fuzz project:

▪ corpus

▪ crashes

▪ libfuzzer/aflplusplus/sydr/atheri
s/jazzer (work directories)

▪ casr (crash clusters and ubsan
reports)

▪ security (symbolic checkers)

▪ coverage

▪ sydr-fuzz*.log (logs)

TOML-config:

[sydr]
target = "/decode_wav_sydr @@"
jobs = 2

[aflplusplus]
target = "/decode_wav_fuzz"
args = "-x wav.dict -i /corpus"
jobs = 2

[cov]
target = "/decode_wav_cov @@"

Run: sydr-fuzz –c config.toml run|cmin|security|cov-html|casr

27

1. Sydr-Fuzz achieved higher coverage than other fuzzers

2. Sydr-Fuzz outperformed existing fuzzers on most benchmarks

Sydr+libFizzer vs 2xlibFuzzer Sydr+AFL++ vs SymQEMU+AFL++

Sydr+AFL++ vs 2xAFL++ Sydr+AFL++ vs FUZZOLIC+AFL++

sydr-fuzz.github.io/fuzzbench

https://sydr-fuzz.github.io/fuzzbench

28

OSS-Sydr-Fuzz: Hybrid Fuzzing for Open Source

github.com/ispras/oss-sydr-fuzz – fork of OSS-Fuzz for
hybrid fuzzing with Sydr-Fuzz

▪ 65+ projects and 500 fuzz targets

▪ Sydr-Fuzz discovered 135+ new bugs in 25+ projects:
TensorFlow, PyTorch, Cairo (GTK), OpenJPEG,
Poppler, ICU, Tarantool, Torchvision, etc. All trophies
on GitHub

▪ 20+ issues were found by Sydr symbolic security
predicates

https://github.com/ispras/oss-sydr-fuzz
https://github.com/google/oss-fuzz
https://github.com/ispras/oss-sydr-fuzz/blob/master/TROPHIES.md

29

Sydr-Fuzz: Dynamic Analysis Pipeline

1.
Hybrid fuzzing with Sydr and
libFuzzer/AFL++; coverage-
guided Python (Atheris) and
Java (Jazzer) fuzzing:
sydr-fuzz run

2.
Corpus minimization:
sydr-fuzz cmin

3.
Error detection (out of
bounds, integer overflow,
numeric truncation, etc.) via
symbolic security predicates:
sydr-fuzz security

4.
Collecting coverage:
sydr-fuzz cov-html

5.
Triaging, deduplication, and clustering of crashes and
Undefined Behavior Sanitizer errors with Casr, and
later upload of new and unique reports to DefectDojo:
sydr-fuzz casr --ubsan --url <URL>

https://www.llvm.org/docs/LibFuzzer.html
https://aflplus.plus/
https://github.com/google/atheris
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/ispras/casr

30

31

Sydr & libFuzzer
▪ libFuzzer workers use shared corpus directory

▪ Sydr takes seeds to modify and puts generated seeds to the
same directory

▪ libFuzzer immediately loads seeds generated by Sydr

▪ Reloaded files are logged by libFuzzer:
reviews.llvm.org/D100303000

▪ Sydr-Fuzz removes not reloaded seeds from corpus

▪ Scheduling seeds for Sydr:
▪ whether seed discovered new function
▪ whether seed brought new coverage
▪ whether seed increased libFuzzer features
▪ creation time / size

https://reviews.llvm.org/D100303

32

Sydr & AFL++

▪ Sydr is launched as a fake secondary AFL
worker

▪ Sydr is executed on seeds from AFL main
worker queue

▪ Sydr-Fuzz uses afl-showmap to minimize
seeds generated by Sydr before putting them
in Sydr worker queue

▪ AFL main worker scans Sydr queue and
imports useful seeds

▪ Seeds for Sydr are scheduled: new coverage,
initial corpus seed, file size, novelty

▪ Running AFL++ in parallel mode with
automatically assigned options (schedulers,
MOpt, etc.)

33

Symbolic Security Predicates

▪ Out of bounds, integer overflow, etc.

▪ Security predicates are checked on minimized corpus after
fuzzing

▪ Generated seeds are verified on sanitizers

▪ Deduplication of detected errors

34

Symbolic Checkers Detect Additional Bugs
After Fuzzing

github.com/opencv/opencv/issues/22284

opencv/3rdparty/openjpeg/openjp2/image.c:134:

l_y1 = p_cp->ty0 + (p_cp->th - 1U) * p_cp->tdy; /* can't overflow */

Can’t overflow? But we can!

Sydr security predicate error:

opj_image_comp_header_update:/opencv/3rdparty/openjpeg/openjp2/
image.c:134 - imul r15d, eax - unsigned integer overflow

Automatic verification with sanitizers:

/opencv/3rdparty/openjpeg/openjp2/image.c:134:40: runtime error:
unsigned integer overflow: 2 * 4278190076 cannot be represented in
type 'unsigned int'

https://github.com/opencv/opencv/issues/22284

35

Integer Overflow to Buffer Overflow in Rizin

symbols_size = (symbols_count + 1) * 2 * sizeof(struct symbol_t);

if (symbols_size < 1) {

ht_pp_free(hash);

return NULL;

}

if (!(symbols = calloc(1, symbols_size))) {

ht_pp_free(hash);

return NULL;

}

...

symbols[j].last = true;

36

CASR: Crash Triaging

▪ casr-san runs crashes on sanitized binary and creates reports

▪ Crash report contains stack trace, crash line, crash severity,
assembly, source, etc.

▪ casr-cluster -d deduplicates crashes based on stack trace hash

▪ casr-cluster -c performs hierarchical clustering of crash reports

▪ casr-gdb generates crash reports for non-instrumented binaries

▪ casr-ubsan creates Casr reports for unique UBSAN errors

▪ casr-dojo uploads new and unique reports to DefectDojo

More at OFFZONE 2023: CASR: Your Life Vest in a Sea of Crashes

github.com/ispras/casr

https://github.com/DefectDojo/django-DefectDojo
https://github.com/ispras/casr

37

38

Questions?

sydr-fuzz.github.io

Telegram:

@ispras_natch @sydr_fuzz

https://sydr-fuzz.github.io/

	Слайд 1, Fuzzing for SDL: Select, Cover, Reveal
	Слайд 2, About ISP RAS
	Слайд 3, Cybersecurity Technology Stack
	Слайд 4, Every End is a New Beginning
	Слайд 5
	Слайд 6
	Слайд 7
	Слайд 8
	Слайд 9
	Слайд 10
	Слайд 11
	Слайд 12
	Слайд 13
	Слайд 14
	Слайд 15
	Слайд 16
	Слайд 17
	Слайд 18
	Слайд 19
	Слайд 20
	Слайд 21
	Слайд 22
	Слайд 23, What is Sydr?
	Слайд 24, Dynamic Symbolic Execution with Sydr
	Слайд 25
	Слайд 26, Sydr-Fuzz Usage
	Слайд 27
	Слайд 28, OSS-Sydr-Fuzz: Hybrid Fuzzing for Open Source
	Слайд 29, Sydr-Fuzz: Dynamic Analysis Pipeline
	Слайд 30
	Слайд 31, Sydr & libFuzzer
	Слайд 32, Sydr & AFL++
	Слайд 33, Symbolic Security Predicates
	Слайд 34, Symbolic Checkers Detect Additional Bugs After Fuzzing
	Слайд 35, Integer Overflow to Buffer Overflow in Rizin
	Слайд 36, CASR: Crash Triaging
	Слайд 37
	Слайд 38
	Слайд 39

