
github.com/ispras/casr

CASR: Your Life Vest in
a Sea of Crashes
Speaker: Andrey
Fedotov, Ph.D.

Rnd Team Lead, ISP RAS
infosec.exchange/@anfedotoff

Senior DevSecOps Engineer, Yandex Cloud
infosec.exchange/@VishnyaSweet

Speaker: Alexey
Vishnyakov, Ph.D.

2

Fuzzing in Security Development Lifecycle

Fuzzing is DAST that unveils
input seeds causing the target
application to crash or trigger
sanitizer checks

Google OSS-Fuzz provides
continuous fuzzing for open
source software where crash
triaging and fixing are
performed by OSS project
maintainers

When we deliver SDL
practices to companies,
crashes are mostly triaged in-
house by product developers

To reduce the burden on
shoulders of software
engineers, crash triaging
should be thoughtfully
automated in DevSecOps
pipelines

https://github.com/google/oss-fuzz

3

Crash Triaging Problems

1.
Tons of crashes
flooding the
security board

2.
Removing
duplicate crashes

3.
Crash debugging
overhead

4.
Lots of different
programming
languages

5.
Huge variety of
fuzzers

6.
Vulnerability
management:
estimating crash
severity

4

Outline

▪ Existing Crash Triaging Tools
Survey

▪ CASR: Crash Analysis and
Severity Report

▪ Fuzzing Crash Triage Pipeline

▪ Undefined Behavior Sanitizer
Errors Triage

▪ Vulnerability Management
with DefectDojo

▪ Exporting Crash Reports to
SARIF

▪ LibCASR: API for Crash Triage

https://github.com/ispras/casr

Existing Crash
Triaging Tools Survey

6

Crash Triaging Tools Survey

▪ GDB exploitable plugin:
classifies crash severity

▪ AFLTriage: GDB stack trace
hash based deduplication

▪ The tools above are
abandoned

▪ Apport: Ubuntu crash
reporting

▪ ClusterFuzz: OSS-Fuzz
backend, crash deduplication
based on Levenshtein
distance between stack
traces

AFLplusplus/docs/fuzzing_in_depth.md

CASR: Crash Analysis
and Severity Report

8

Motivation to Create CASR: Crash
Analysis and Severity Report

Continuous fuzzing of open source projects
github.com/ispras/oss-sydr-fuzz:

▪ The more projects, the more crashes to handle

▪ CI fuzzing support for new program language often
requires one more fuzzer/engine

▪ Different fuzzers have varying output

Vulnerability management:

▪ Which bug to fix first?

https://github.com/ispras/oss-sydr-fuzz

9

CASR History

1. Casr (now casr-core): Core Dump Analysis and Severity Estimation

2. Casr-Cluster: Crash Clustering for Linux Applications

3. CASR tools: casr-core, casr-gdb, casr-san, casr-python, casr-
java, casr-ubsan, casr-afl, casr-libfuzzer, casr-cli, casr-dojo

4. LibCASR: Crash Triage API

10

casr-core: Core Dump Analysis and
Severity Estimation

▪ Based on ideas from exploitable and apport

▪ CASR report with useful information: stack trace,
register values, disassembly, severity estimation,
opened files and network connections, etc.

▪ Online mode (apport like) and offline mode (GDB like)

https://github.com/jfoote/exploitable
https://github.com/canonical/apport

11

CASR Crash Report

12

Crash Severity Estimation

Highlight likely critical and likely not critical crashes:

▪ EXPLOITABLE: PC overwriting, possible CWE-123 (write-
what-where)

▪ PROBABLY_EXPLOITABLE: SIGILL, EXPLOITABLE cases
with NULL values

▪ NOT_EXPLOITABLE: SIGABRT, SIGFPE, panics,
exceptions, etc.

Provide short description about crash:

▪ Extract panic (Rust/Go) and exception
(C++/Python/Java) messages

Fuzzing Crash Triage
Pipeline

14

Fuzzing Crash Triage Pipeline
Create crash reports

casr-san/casr-gdb/
casr-python/casr-java

Remove duplicate
crash reports

casr-cluster -d

Cluster duplicate
crash reports

casr-cluster -c

Upload new reports to
DefectDojo

casr-dojo

Create reports for
unique UBSAN errors

casr-ubsan

View reports

casr-cli

15

casr-san: Create CASR Reports for C/C++/Rust/Go

▪ Run program with crashing seed and parse its output

▪ Extract stack trace from Address Sanitizer report

▪ Parse native stack trace for Go

▪ Disable address space randomization for deterministic addresses in stack
trace

▪ Get panic or exception message when present

▪ Get termination signal (SIGSEGV/SIGBUS/SIGABRT/SIGILL/etc.)

▪ Get stack trace from GDB when it is missing in output (e.g., AFL++ fuzz
target abort)

▪ Filter standard library function calls, get crash line, and collect source code

▪ Estimate severity according to error type (e.g., memory writes are
considered EXPLOITABLE)

16

casr-gdb: Create CASR Reports from
GDB Execution
▪ Helps determine whether program still crashes

without sanitizers

▪ Uses github.com/anfedotoff/gdb-command for
executing GDB commands in batch mode

▪ Gets stack trace, signal info, mappings, registers,
and disassembly from GDB

▪ Estimates severity based on crash state
(disassembly, registers, signal)

▪ Extracts panic/exception from program output

▪ Parses GDB stack trace and determines crash
line in triaged application

▪ Reads crash source code

https://github.com/anfedotoff/gdb-command

17

CASR Reports for Python and Java

▪ casr-python and casr-java create CASR reports for
Python and Java exceptions

▪ Exception is thrown by Python/Java application or
Atheris/Jazzer harness

▪ Exception messages and stack traces are parsed
from program output

▪ Stack traces are filtered to detect a crash line and
extract source code

▪ When crash occurs in C/C++ native extensions,
casr-san is launched for report creation

https://github.com/google/atheris
https://github.com/CodeIntelligenceTesting/jazzer

18

Removing Duplicate Crashes

casr-cluster –d

▪ Load all CASR reports

▪ Filter out noise from stack traces: standard library calls,
__GI_raise, sanitizers, fuzzer internals, panics, exceptions, etc.

▪ Remove recursive function calls

▪ Crashes are considered duplicate when their stack traces are
identical after filtering

▪ Remove duplicate crash reports

19

casr-cluster: Crash Reports Clustering

Clustering method from Microsoft ReBucket paper:

▪ Pairwise comparison of stack traces based on metrics

▪ Hierarchical clustering

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/rebucket-icse2012.pdf

20

Integrating CASR Pipeline with Fuzzers

Crash triaging pipeline is automated for AFL++ (casr-afl)
and libFuzzer/go-fuzz/Atheris/Jazzer (casr-libfuzzer):

▪ Parallel CASR reports creation

▪ Deduplication and clustering

▪ Copying crashing input seeds next to CASR reports

▪ Printing clusters summary

▪ Additional GDB reports for target built without
sanitizers

casr-libfuzzer -i crashes -o casr-out -- /fuzz_target

casr-afl -i afl-out -o casr-out -- /gdb_target @@

21

Undefined Behavior
Sanitizer Errors Triage

23

casr-ubsan: Triage Undefined Behavior
Sanitizer Errors

▪ Run program with all seeds from corpus and crashes

▪ Extract UBSAN runtime errors

▪ Create CASR report for each error

▪ Deduplicate CASR reports based on crash line

24

25

casr-ubsan: Report Example

Vulnerability Management
with DefectDojo

27

casr-dojo: Upload New and Unique CASR
Reports to DefectDojo

▪ Get all active, false positive, and out of scope findings from
DefectDojo

▪ Compute filtered stack trace hashes (or get crash lines for UBSAN
reports) for downloaded findings

▪ Upload new CASR reports to DefectDojo that have unique filtered
stack trace hashes (or unique crash lines for UBSAN reports)

▪ Each finding will have a generated description with CASR report
fields like crash line, severity, error description, source, stack trace,
etc.

▪ Furthermore, casr-dojo uploads CASR report, GDB CASR report, and
crash seed files for corresponding finding

28

29

Exporting Crash
Reports to SARIF

31

Export CASR Reports to SARIF

LibCASR: API for Crash
Triage

33

LibCASR: Crash Triage API

LibCASR’s Rust API:

▪ Stack trace parsing

▪ Crash report collection

▪ Crash triaging (deduplication and clustering)

▪ Crash severity estimation

Crash source: ASAN, UBSAN, GDB

Program languages: C/C++/Rust/Go/Python/Java

Architectures: x86/ARM/RISC-V

crates.io/crates/libcasr

https://crates.io/crates/libcasr

34

Integrating LibCASR and LibAFL
/// parse ASAN error output emited by the target command and compute the hash

pub fn parse_asan_output(&mut self, output: &str) {

let mut hash = 0;

if let Ok(st_vec) = AsanStacktrace::extract_stacktrace(output) {

if let Ok(mut stacktrace) = AsanStacktrace::parse_stacktrace(&st_vec) {

stacktrace.filter();

let mut s = DefaultHasher::new();

stacktrace.hash(&mut s);

hash = s.finish();

}

}

self.update_hash(hash);

}

Fuzzer example: github.com/anfedotoff/libafl_casr_forserkver_xlnt

https://github.com/anfedotoff/libafl_casr_forserkver_xlnt

DEMO

36

Conclusion

CASR is a compound tool set and library that has plenty of benefits:

▪ Crash report creation with all needed information for manual analysis

▪ Significant reduction of crashes to be analyzed manually

▪ Integration with modern fuzzers (libFuzzer, AFL++, go-fuzz, Atheris,
Jazzer) and fuzzing frameworks (LibAFL)

▪ Integration with DefectDojo vulnerability management system

▪ Support of multiple processor architectures (x86, amd64, arm32,
aarch64, RISC-V)

Stargazing is very much appreciated!

github.com/ispras/casr

https://github.com/ispras/casr

Questions?

github.com/ispras/casr

