
Casr-Cluster: Crash Clustering for Linux
Applications

Georgy Savidov, Andrey Fedotov

3 december 2021

ISP RAS

Idea

• Linux application development is closely related with debugging and
fixing various bugs. Our tool was created to help developers in this
difficult task.

• We propose a tool Casr-cluster, that groups "similar"crashes
(information about which is contained in Casr reports) together as
clusters.

• First of all, our tool is focused on clustering crashes obtained by
fuzzing programs / libraries written in the C programming language.

1/14

Metrics

The main component of the crash, on the basis of which we determine
how much crash reports differ, is the call stack. We used some approaches
to calculate the similarity and clustering similar to Microsoft’s ReBucket
method. We use the following two pseudometrics in our algorithm:

• TopDist - the minimal position offset of the current frame relative to
the topmost one.

• RelDist - distance between matched frames in two call stacks.

2/14

Example

3/14

About algorithm in general

Based on these pseudometrics, we make the following assumptions
regarding the similarity of the two crashes:

• The closer the matching frames are to the top of the call stacks, the
greater the TopDist weight.

• The smaller the distance between the matching frames in call stacks,
the greater the weight of RelDist.

In our method of calculating the similarity, we also used a dynamic
programming algorithm to find the largest common subsequence of two
sequences(LCSP?).

?Longest common subsequence problem 4/14

https://en.wikipedia.org/wiki/Longest_common_subsequence_problem

Longest common subsequence

How to find the length of the longest common subsequence?
Let’s say we are looking for a solution for the case (n1, n2), where n1, n2

are the lengths of the first and second lines. Let there already exist
solutions for all subproblems (m1,m2) less than a given one. Then
problem (n1, n2) is reduced to smaller subproblems as follows:

f (n1, n2) =

{
0, n1 = 0 ∨ n2 = 0

f (n1 − 1, n2 − 1) + 1, s1[n1] = s2[n2]

max(f (n1 − 1, n2), f (n1, n2 − 1)), s1[n1] 6= s2[n2]

(1)

The complexity of the
algorithm is O(n1 ∗ n2).

5/14

Equivalence of frames

Two frames (call sites) are matched

• If the frames have the same module and the same offset in this
module (+ the same offset in line if presents). These attributes
can be obtained from debug information or mappings.

• If the frames have the same linear addresses, if we have not any
other information (module + offset). But in this case, we do not
take into account the ASLR, which is often present in the system.

This mechanism for stack traces comparison was implemented in an open
source library?.

?https://github.com/xcoldhandsx/gdb-command 6/14

https://github.com/xcoldhandsx/gdb-command

Clustering algorithm

First stage.

M[i][j] = max

M[i][j − 1],

M[i − 1][j],

M[i − 1][j − 1] + addition(i , j)

(2)

addition(i , j) =

{
e−r∗|i−j|−a∗min(i,j), f1,i = f2,j

0 otherwise
(3)

dist(a, b) = 1− similarity(a, b)

Where:

• ’r’ - RelDist coefficient.
• ’a’ - TopDist coefficient.

A compressed distance matrix is formed, composed of pairwise distances
between the crash stack traces.

7/14

Clustering algorithm

Second stage.

CLdist(CLi ,CLj) = max(dist(a, b))
a∈CLi ,b∈CLj

(4)

Hierarchical clustering is started based on the distance matrix obtained in
the first stage. The distance between two clusters is defined as the
maximum of the pairwise distance between crashes retrieved from the
two clusters.

7 5 11 10 0 2 4 8 3 6 1 9
0.0

0.2

0.4

0.6

0.8

1.0

Hierarchy dendrogram

8/14

Removing "noise"from stack trace

9/14

Deduplication

• We also implemented a method for reports deduplication. two
crashes are considered the same if similarity(a, b) = 1. For this, all
frames in both call stacks must be equal.

• We can hash each frame and the entire Call Stack using attributes
such as name of the file to which frames belong and offset from its
beginning.

10/14

Result table

Casr-cluster Testing Results

Library
Crash
reports

Unique
crashes

Number
of
clusters

Average
number
of
reports
in
cluster

Execution
time(sec)

Deduplication
time(sec)

libxml2 49 10 9 1 1.3 0.08
jasper 231 55 26 2 3.8 0.21
lame 74 15 7 2 1.4 0.06
openjpeg 264 72 36 2 6.5 0.24
libtiff 155 56 40 1 4.0 0.14
libarchive 306 5 3 2 1.2 0.24
lrzip 38 12 9 1 1.3 0.05
poppler 763 29 15 2 2.3 1.14

TOTAL: 1880 253 154 2

11/14

Results

• Clustering was performed with the coefficients a = 0.04, r = 0.13

and the threshold value d = 0.3.

• The number of crash reports has decreased by about an order of
magnitude, they were replaced by clusters (with deduplication by
about 1.7 times).

• Some clusters have more than 3 crashes. In the poppler library, one
of the clusters contains 6 similar (but not the same) crashes.

• The clustering time is at an acceptable level.

12/14

Example

13/14

Conclusion

• We propose crash clustering method, based on call stack
comparison. Method could be applied to crash reports, collected via
Casr tool for Linux systems.

• We use optimization for call stack comparison when call stack has
libc abort function call.

• Before applying the clustering algorithm, you should first deduplicate
the crashes for best performance.

14/14

